刘挺博客
http://users.ir-lab.org/~tliu/blog/
怎样选题
前文曾提到科学研究的层次,并分了6个层级。此处所说的选题指的是从C到E三个层次上的选择问题,即:C. 研究方向、D. 子方向、E. 课题。选择研究方向是实验室(Lab)主任们需要重点思考的事情,选择子方向是研究小组(Group)的组长们需要重点思考的事情,选择课题是研究生们需要重点思考的事情。
选择太多,很容易让人困惑,要想理出一个头绪来,需要一些基本的原则。微软的许峰雄来访时谈到了他选择课题的三个标准:有足够的兴趣,能成为世界第一,能赚钱。(!)兴趣,这个原则是非常重要的,我赞同,获得国家最高科技奖的“黄土之父”刘东生院士是搞地球环境科学的,经常在野外作业,按常人推断,这该是多么枯燥艰苦的工作啊,但他说:“枯燥?不!因为经常有新发现,其中的乐趣难以形容”。我坚信任何一个成功的科学家的直接工作动源都是兴趣,而不是意志。(2)成为世界第一,不容易,但是应该作为一种判断标准,如果某个领域已经非常成熟,很难有什么创新了,或者大牛云集,已经打破头了,则应该有所回避。(3)赚钱,许峰雄是在工业研究院中工作,比较注重实用,因此他强调了“赚钱”,我是在工科大学里工作,也比较偏重应用,因此是赞同“能赚钱”这个标准的。不过,“能赚钱”不等于立即赚钱,5年、10年,20年后能够赚钱的研究课题都是值得关注的。
谈谈我选择课题的一些体会:
1、要有实际需求
一个课题必须有实际需求,可能是现实的需求,也可能是潜在的需求;可能是直接的需求,也可能是间接的需求,总之是的的确确被人们所需要的。据个反例,比如自动文摘,自动文摘是我的博士论文课题,但是实际应用需求始终不清楚,自动文摘的结果用于编辑出版,质量肯定无法保证,用于帮助人们快速浏览资料吧,Google提供的包含查询词的简单的Snippet就起到了这个作用,因此,至今基于全文分析的单文档自动文摘到底用到哪里,仍然不清楚,这方面的研究已经有50多年的历史了,仍然是不死不活,总是找不到应用就无法得到政府和企业界的持续性支持,以往的付出成为鸡肋。我觉得单自动文摘不是一个好课题,目前阶段多文档文摘,或者说对某个题目的自动综述分析是非常好的题目。
2、有较大的未知空间
以手写体汉字识别为例,市场上已经大面积应用了,在研究上就不宜再展开。
3、与自己以往的工作有关联
如果你觉得自己的研究领域太窄,或者竞争对手太多,或者自己缺乏兴趣,则可以适当扩展研究方向,但最好是相关性地扩展,比如从自然语言处理(NLP)扩展到信息检索(IR),IR要用到NLP的技术,这种扩展是从底层技术到应用系统的扩展,很自然。再比如从图片检索扩展到视频检索,只是处理对象有变化,很多原有的技术优势仍然能够发挥。如果跳跃性太大,比如搞NLP,忽然发现做数据挖掘有前途,于是单纯地转向数据库中数据挖掘,和文本处理完全脱节,这种做法一方面无法发挥既有的技术积累,另一方面也让同行感觉你不够专注,不容易得到认可。最要命的是有的人根本就没有自己的方向,什么课题都敢接,这样的人可以一时间让人觉得风风火火,经费也很充足,但过不了多久就会摔落下去,因为缺乏积累,学术形象不清,公鸡下蛋,干了自己不擅长的事情,在学术圈还怎么混?
4、有可能得到国家的支持
对于资深学者,他选定一个课题后,可以写出立项建议,去说服政府或军方支持他的工作,从而填补国家空白,成为国内这个方向的先驱。哈工大的杨孝宗老师借鉴CMU在wearable computing方面的研究成果,在国内率先提出穿戴计算机的概念,坚持多年,就获得了军方的认可。对于刚出道的年轻人,无力直接影响政府,那只有自己预先判定一个几年后可能成为热点的方向,先走一步,做出一些成绩来,等到大气候适宜的时候,由于他已经取得了一定的成果,也有可能被认可为这个领域的先行者,得到国家的支持。
课题的类型
对一个课题的类型要有一个判断,是研究型的还是开发型的,如果是研究型的,要组织博士生们来攻关,鼓励大家大胆尝试,提出创见;如果是开发型的,要更多地召集硕士生们来做,强调利用一切现有的技术手段把技术或系统做到实用可靠。这两者要分的比较清楚,既不能通过各种打补丁的方法,或者说一大堆小技巧来对付研究型的课题,因为那样是做不出突破性进展的,也不能在开发类课题上总是异想天开,尝试还很不成熟的技术。
如果是研究型课题,还要区别是基础研究还是应用研究,基础研究的结果不能直接被用户使用,类似重工业,应用研究的结果最终用户直接就能够用上,类似轻工业。对于基础研究,可以抛开具体应用的约束,专注于一些科学原理技术原理的突破。对于应用研究,则需要考虑用户的需求。
课题还有长期(long term)和短期(short term)之分,长期研究的课题往往难度大,研究结果难以预料,短期项目则比较好预测,可以速战速决。
|